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LETTER TO THE EDITOR 

On-line backpropagation in two-layered neural networks 

Peter Rieglert and Michael Biehlt 
Institut f~ Theoretische Physik. Julius-M-lians-Univenit;ir Am Hubland, D-97074 
Wfinburg, Gemtany 

Received 16 August 1995 

Abstract We present an emcl analysis of ieaming a rule by on-line gradient descent in a two- 
layered neural network with adjustable hidden-to-output weights (backpropagation of error). 
Results are compared with the training of networks having the same architecmre but fixed 
weights in the second layer. 

The ability of neural networks to learn arule from examples [I] has been studied successfully 
in a statistical mechanics context, see e.g. [2-4] for recent reviews. So far most of the 
analysis has been restricted to very simple networks such as the single layer perceptron [l] 
or networks with one layer of hidden units and a fixed hidden-to-output relation, e.g. the 
so-called committee machine 131. 

In the following we extend the recent investigation of learning by on-line gradient 
descent [8, IO] to two-layered networks with adjustable weights connecting the hidden units 
and the output. This topic is of crucial importance as systems with variable hidden-to- 
output relations can realize more complex classification schemes and are commonly used 
in practical applications of neural networks [1,5]. 

The learning prescription corresponds to an on-line version of the so-called 
‘backpropagation of error’ [I], a method widely used in practice [5].  In the theory of 
on-line learning (e.g. [6-8,101 and references therein) it is assumed that a sequence of 
examples [[”, +‘] for an unknown rule is provided by the environment Here, E” denotes 
an example input vector and 7” = r(<’) E R is the corresponding correct rule output. 

Consider a student network with a single continuous output u(W, E )  where W denotes 
the set of all weights in the network. The frequently used quadratic error measure 

(1) 
quantifies the degree of disagreement between the student and the rule output for a particular 
input. Throughout this paper we consider independently drawn vectors .$ with uncorrelated 
random components of zero mean and unit variance. Denoting the average over this input 
distribution by (. . .)$ we define the generalization error 

d W . 0  = $[u(W, 5) - r(01’ 

€g(W) = (E(W,€)Jt. (2) 

This quantity measures the validity of the hypothesis for the rule, which is defined through 
the student architecture and its weights W .  

t Email address: pr@physik.uni-wuerzburgerrburg.de 
$ E-mail address: biehl@physik.uni-wuerzburg.de 
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In the on-line scheme a new, uncorrelated example is presented at each learning step p 
and the set of student weights is updated instantaneously. In the following we will consider 
an update according to the gradient of E(W, <’) with respect to the weights: 

W”+’ = W’ - i j [U(W’ ,  E’) - r’lVwo(W, 5”)lwJ.. (3) 
The learning rate i j  controls the size of the steps made in the direction of steepest descent. 

As a specific example, we  study the learning of a rule which can be parametrized 
in terms of a teacher neural network with one hidden layer of M continuous nodes with 
sigmoid activation function and a single linear output unit. We will distinguish two different 
types of network models in the following. 

In afuliy connected architecture all M hidden units receive information from the same 
N input nodes. The total output of such a teacher network is given by 

M 
<(E) = w ( y n )  with R = B, * E (4) 

ll=l 

with weights E, E BN connecting the nth hidden unit with the input 6 E RN and the set 
(v&l...., M of hidden-to-output connections. 

Altematively we consider a so-called tree-like architecture, where the hidden units are 
connected to non-overlapping receptive fields, each of which consists of N input nodes. 
Thus, the teacher output is also of the form (4) but with yn = E. .e, where en is the nth 
subset of the (M . N)-dimensional input = (EI, t2.. . . , EM). 

As an example for a sigmoid activation function we choose g(y) = erf(y/&) 18, IO], 
but our results should not depend upon this choice crucially. 

The student is taken to be a network of the corresponding architecture with K hidden 
units, input-to-hidden weights J; E BN, and adjustable hidden-to-output weights wI, 
i = 1, . . . , K. Its output is given by 

The quantities x; are defined as x; = Ji . E in the overlapping architecture with an N- 
dimensional input and xi = J; . E; in the case of K non-overlapping receptive fields. In 
both cases, we will scale the learning rate in equation (3) with the number of inputs to a 
single hidden unit: i j  = q/N. 

Given a specific teacher network, the generalization error (2) of the student depends in 
the thermodynamic limit N + 00, M, K c( O(1) only on the {U);] and the orderparameters 
R;, = Ji . E,,, Q;j = J; .Jj m = 1, ... M and i , j = 1 ,  ..., K . ( 6 )  

It is straightforward to derive from (3) recursion relations for the mean values of all these 
quantities by performing the average over the latest example input [8, lo]. Furthermore, it is 
possible to show that in the thermodynamic limit theoverlap parameters (R;,,,. Qij}, as well 
as the adjustable weights {mi), become self-averaging quantities [12]. Thus the description 
in terms of their mean values is sufficient. In the same lit, one can interpret a = p / N  
as a ‘continuous time’ and obtains ordinary differential equations for the evolution of the 
learning network 

where 
Y 



Letter to fhe Editor L509 

The averages are over the (M . K)-dimensional Gaussian distribution of the {xi ,  ym]  which 
is determined through the correlations 

(xixj) Qi j  (XiYm) = Rim . (YmYn) = S m  . & Tmn 

for overlapping architectures and 

b i x j )  S i jQi j  ( x i y m )  = S i m R i m  (YmYn) =&"mn 

in the case of treelike student and teacher networks. All averages in (7) can be performed 
exactly [8, 101 and a numerical integration of the differential equations yields the evolution 
of the overlaps and hidden-to-output weights, and thus the learning curve E.&). 

U" = U and T , ,  = TS,. for all m,n = 1,2, .~ . ,  M << N .  (8) 

For large N ,  this corresponds to uncorrelated vectors B, with independent random 
components of zero mean and variance 1 / N .  Note, however, that the following is easily 
extended to more general asymmetric settings. 

Here we, furthermore, restrict ourselves to situations where K = M, i.e. the rule is 
perfectly learnable for the student. The extension to unlearnable rules (e.g. K e M) and 
oversophisticated students (K t M) will be presented in a forthcoming publication 1121. 

For K = M the number of dynainical variables in (7) is quadratic in K. However, 
due to the symmetric architecture of the teacher network assumed in (8) the time evolution 
rapidly leads to the equality of corresponding variables in different branches of the student 
network (see figure 1 for an example). Hence, for 01 + 03 the student network can be 
described in terms of only five variables, R = Rii, S = R;,, 'Q = Qii ,  C =. Q i j  and 
w = wir  regardless of the actual number of hidden units. 

(a) Tree-like architecture. Here each branch of the network receives a different part of 
the input vector E = (E,, . . . , &) [3,9]. Therefore the 'off-diagonal' order parameters S 
and C do not carry any significant information and hence need not he considered. 

In this letter we analyse only the special symmetric cases where 
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FIgure 1. Learning in a tree-like architechne with two hidden units (K = 2)  for parameters 
T = U = 1. Lek q-dependence of the eigenvalues of the linearized System (hi of m'), xi 

of "2)) goveming the asymptotics of learning. The dotted cwes show AI for K = 3 and 
K = 4, respectively, demonstrating the decrease of qc with increasing K. Right, evolution of 
the dynamical variables far q = 1 (A R, 0 Q, 0 tu). The symbols represent results obtained 
by a simulation of a system with 2N = 200 input units averaged over LOO expiments. Error 
bars would be smaller than the symbols. Note that the dynamical variables in Merent branches 
become equal rapidly in spite of the asymmetric initial conditions Riz(0) = Ru(0) = 0, 
Qii(0) = 1.2, Qu(O)wi(O) = 1.0, and wz(0) = O S .  
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In order to solve the asymptotics of the remaining dynamical variables R, Q and w 
we linearize the equations of motion (7) for small deviations from the optimal solution 

= Q, = T. w, = U. Defining Vc3) = ( R  - T, Q - T, w - U)' the linearization is of 
the form 

where here, and in the following, the upper index denotes the dimension of the corresponding 
matrix. 

For the sake of comparison we also consider the case of fixed hidden-to-output couplings 
in the student network. In this case we let w U in order to keep the task learnable. It 
should be emphasized that learning the rule should be a much simpler task for such a 
student, as the rule parameters U, are assumed to be known a priori. 

Defining V(*) = (R - T, Q - T)T correspondingly the asymptotics near the optimal 
solution R ,  = Qm = T is governed by dV(2)/da = m(2)V(z). Note that by construction 
the (2 x 2)-mahix m@) can be obtained from m(3 by truncation of the last column and 
the last row. Both matrices can be diagonalized analytically for arbitrary parameters T and 
U. Denoting the eigenvalues of mo) by A; and those of m(') by xi one gets 

1 4uzq 

where m33 = -(2q/n) arcsin(T/(l+ T)), mgl = 2 q u / ( n m ) .  Note that A, = & is 
quadratic in q whereas the remaining eigenvalues depend linearly on q. 

The asymptotics of Yo) is governed by max(A,, Az) which depends on q, see figure 1. 
For small q the asymptotic decay of Vcn is proportional to exp(A2a) whereas Vo) cx 
exp(Ala) for larger values of q. For q greater than the critical value 

AI becomes positive and the on-line backpropagation algorithm does not converge to the 
optimal solution. Therefore the range of learning rates that lead to perfect generalization 
is given by q c qc. This range decreases with an increasing number of hidden units like 
qc cx 1/K for large K. Because of A, = i l  the same holds true for V@), i.e. for learning 
with predetermined hidden-to-output couplings [IO]. 

implies a rather remarkable result: the critical learning 
rate is the same whether or not the hidden-to-output weights are adjustable. We therefore 
conclude that-at least for a finite number of hidden units K-the existence of a critical 
learning rate is a first layer effect. 

In the regime of q small enough the asymptotics is govemed by 1 2  and %, respectively. 
Equation (10) implies 1 2  t i z  for all values of T and U. An updating of the couplings in 
the second layer therefore leads to a slowing down of the asymptotic convergence. This 
is precisely what one would expect, since the adaptation of additional (hidden-to-output) 
couplings should decelerate the learning process. However, A2 and x~ are independent of K. 

In addition, the identity A, = 
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This means that the asymptotics of the dynamical variables is independent of the number 
of hidden units in,the small q-regime. 

In order to obtain the asymptotic decay of eg, the generalization error has to be expanded 
up to second order in V(3) (V@) respectively). As in [8] we find that the generalization error 
decays propoaional to exp(2Azor) for small q ( e x p ( 2 h )  if the couplings in the second layer 
are fixed), while eg a exp(A1cY) for large values of q. The change of the asymptotic decay 
occurs at qw defined by A1 = 212 (ijopt by A1 = 2x2). With this learning rate the fastest 
asymptotic decrease of the generalization error can be achieved. Note that qopt is much 
closer to qc than ijopt, as can be seen in figure 1 (for U = T = 1 we obtain ijqt = (2/3)qc 
[8,11], whereas qqt cx 0.96qJ. Therefore, it will be very difficult to tune the learning rate 
optimally in practical applications of on-line backpmpagation. 

Figure 1 also depicts the numerical solution of the full system of the equations of motion 
(7) together with simulations. 

(b) FuiZy connected architecture. Since each hidden node receives information from all 
input units, a permutation symmetry is inherent in the problem, i.e. the ith branch in the 
student network does not necessarily specialize on the ith branch in the teacher network. 
Without loss of generality we relabel the dynamical variables such as if this were indeed 
the case. 

The analysis proceeds similarly to the treelike architecture, except for the fact that 
the asymptotics has to be described by five dynamical variables R, S, Q, d and w. A 
linearization for small deviations from the optimal solution R, = Q, = T ,  S, = C, = 
0, w, = U leads to dVC5)/doc = ~ Z ( ~ ) V ( ~ ) ,  where V" = (R - T ,  S, Q - T ,  C, w - u)~. 

Again, we also consider fixed hidden-to-output couplings w = U. This special case has 
been investigated recently in [lo, 111. The linearization reads dV(4)/dor = m(4)V(4), where. 
VC4) = (R - T ,  S, Q - T, C)T. As before, m" can be obtained from d5) by truncation 
of the last column and the last line. 

The eigenvalues Ai of mC5) and xi of d4) can be computed analytically for arbitmy 
values of T and U. However, the expressions are rather lengthy, even for a particular choice 
of T and U. We therefore only discuss the important features of the aSymptotics, the exact 
expressions for the eigenvalues will be presented in [12]. 

The asymptotics is governed by the largest eigenvalue which we denote by AI and 
Az for d5) and by X I ,  x2 for d4). The q-dependence of the dominating eigenvalue is 
qualitatively the same as for the treelike architecture: the eigenvalues Az, xz are linear in 
qp whereas  AI,^, depend non-monotonically on q. cf figure 2. In contrast to [ll] we do 
not observe that is polynomial in q .  Figure 2 shows the eigenvalues for a particular set 
of parametem. 

qc no 
perfect generalization can be achieved. Moreover, A1 = i 1  holds true as before, implying 
that the value of qc is independent of an adaptation of couplings in the hidden-to-output 
layer. Even if one had an apriori knowledge of U, the maximal learning rate qc would be 
the same. 

Again, we find A2 > ,& for all values of T, U. The additional updating of the second 
layer makes the asymptotic convergence much slower. As can be seen in figure 2, A2 is 
very close to zero. In contrast to the treelike architecture both A2 and 1 2  are K-dependent. 

The asymptotics of the generalization error is as in the non-overlapping case. However, 
here the optimal learning rate qopt is very close to qc due to the non-monotonicity of A1 = A1 
and the K-dependence of A2 and );2. 

Figure 2 shows the numerical solution of the equations of motion (7) for the fully 

* 

The non-monotonic A I ,  & give rise to a criticai learning rate qc, such that for q 

I 
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Figure 2. Leaming in the fully connected architecture with WO hiddcn units (K = 2) for 
parameters T = 1, U = 1.5. Left, eigenvalues that govem the asymptotia of the dynamical 
variables. Notation as in figure 1. Right, numerical solution for the dynamical variables for 
q = 1 and asymmetric initial conditions R(0) = S(0) = C(0) = 0, Q(0) = wl (0 )  = 1, 
W Z ( 0 )  = 0.5. 

connected architecture. Note the plateaus at intermediate values of a, which result from 
the existence of symmetric fixed points of (7). A complete discussion of this effect can be 
found in [ l o ,  111, the extension to adjustable [w i }  will be given in [lZ]. 

In summary, we have presented an exactly solvable model for the training of multi- 
layer neural networks by on-line backpropagation of error. As a specific example we have 
discussed two-layered networks with a single linear output unit and adjustable hidden-to- 
output weights. 

In this letter we have restricted the discussion to learnable rules defined through 
symmetric teacher networks with K hidden units. As an obvious extension we will, 
furthermore, investigate the learning with mismatched student architectures (K # M), e.g. 
the case of an unleafnable rule. 

The analysis of the asymptotic learning cuves yields the same critical rates qc(K)  as 
in the simpler case of an U priori known hidden-to-output relation. For q g qopl (with 
qapt rather close to qc), however, the asymptotic decrease of eg is much slower because of 
the required adaptation of the additional weights. Due to the increased flexibility of the 
network it is capable of learning more complex rules, but this ability is acquired at the cost 
of higher computational effort. 

So far we have chosen the same learning rate 6 = q / N  everywhere in the network. 
The extension to a different rate qw in the second layer is straightforward as long as qw 
remains of order b ( l / N ) ,  otherwise the description in terms of the mean values of {a} is 
insufficient. It remains an open problem how to analyse for example the practically relevant 
case of qw m 0(1/K) [l] in a similar fashion. 

We thank D Saad and S A Solla for providing [ll] to us prior to publication. We are 
grateful to G Reents and A Scharnagl for a critical reading of the manuscript. P Riegler 
was supported by the Deutsche Forschungsgemeinschaft. 
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